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Harvey Walden

ABSTRA CT

Methods for obtaining approximate solutions for the fundamental eigenvalue

of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue

problem for the vibration equation) on the unit spherical surface are developed.

Two specific types of spherical surface domains are considered: (1) the interior

of a spherical triangle, i.e., the region bounded by arcs of three great circles,

and (2) the exterior of a great circle arc extending for less than T radians on

the sphere (a spherical surface with a slit). In both cases, zero boundary con-

ditions are imposed. In order to solve the resulting second-order elliptic par-

tial differential equations in two independent variables, a finite difference

approximation is derived. The symmetric (generally five-point) finite difference

equations that develop are written in matrix form and then solved by the iterative

method of point successive overrelaxation. Upon convergence of this iterative

method, the fundamental eigenvalue is approximated by iteration utilizing the

power method as applied to the finite Rayleigh quotient. The implementation of

these numerical techniques is described in detail, including the presentation of

separate algorithms for calculating the fundamental eigenvalue for the two dis-

tinct domains considered. Although analytical solutions to this eigenvalue prob-

lem are not available in the general case, the problem is solved analytically for
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exact values of the fundamental eigenvalue for certain special cases. These

exact solutions are useful in providing checks on the numerical results pre-

sented based upon digital computer calculations. Several tables of numerical

applications for various cases of interest are displayed and discussed.
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SECTION I

INTRODUCTION

Let G be a polyhedron in Euclidean three-dimensional space whose boundary

is denoted by 6G. Consider the problem:

Av = f in G,
(1)

v = 0 on BG,

where A denotes the Laplacian and v and f are defined in G. It is known

(Reference 1) that the derivatives of v may become singular near a vertex of

G, and the severity of the singularity is determined by the fundamental eigen-

value of an associated eigenvalue problem for the Laplace-Beltrami operator

on the unit sphere. Methods for obtaining approximate solutions of this asso-

ciated eigenvalue problem will be considered in this paper.

If spherical co-ordinates are introduced such that

x= r sin q cos 6,

y = r sin € sin 8, (2)

zr Ccos ,

then the Laplacian may be written (Reference 2, p. 225)

Au r- 2 (r 2 Ur) + r-2Au, (3)

where

Au = c s c [(u csc ) + (uk sin )(4)

and where the subscript notation is used to indicate partial differentiation. If

the origin of the co-ordinate system is placed at a vertex of G, then the singu-

larity in the solution of problem (1) at the origin is related to the eigenvalue

problem

Au + ku = 0 in D,
(5)

u = 0 on aD,

1
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where D represents the area on the surface of a small sphere (centered at the

origin) and bounded by the polyhedron G. In this paper, the case in which the

region D is a spherical triangle T, i.e., the region bounded by three great

circles, will be considered. Also to be discussed is the case in which D is a

slit domain, consisting of the exterior of an are of a great circle on the sphere.

Without loss of generality, it may be assumed that the sphere is of unit

radius, so that the spherical co-ordinates satisfy

r = 1,

o 7 , (6)

o < 27T.

The boundary 3D will consist of arcs of three great circles on the unit sphere.

The spherical co-ordinate system is defined so that the origin of co-ordinates

is at the center of the sphere, the z-axis intersects the unit sphere at a vertex

of T (i.e., at an intersection point of two of the great circles specifying T), and

the x, z-plane contains a side of T which is less than r radians in length. In

this manner, the relevant arcs of the three great circles specifying T are given

by

= 0, (7a)

= 0, (7b)

z = ax + by, (7c)

where 8, a, and b are all constants (see Figure 1). Equation (7c) may be trans-

formed to spherical co-ordinates by use of equations (2) as

cot k = a cos 0 + b sin 8. (8)

Equations (7a), (7b), and (8) may be regarded as defining two domains on the

sphere, the region R(E , a, b) given by the inequalities
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z
N pole

y

oX

S pole

Figure 1. The spherical triangle T bounded by arcs of three great circles
(the interior. R of T is shown shaded), which are specified by the three
parameters 0, a, and b
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0 <8 <0,
(9)

cot o > a cos 8 + b sin 8,

and the region S(8, a, b) complementary to R(0, a, b). Both the interior R and

the exterior S of the spherical triangle T are thus specified by the three param-

eters 8 , a, and b, which satisfy the inequalities

0 - 8 < 2m,
(10)

- o < a, b < o.

The eigenvalue problem (5) for the unit sphere may be written, by virtue of

equation (4), as

(U. csc O)o + (u. sin ) + u sin4 = 0 in D, (Ila)

u = 0 on BD, (11b)

where D is one of the regions R(@, a, b) or S(8, a, b). Equation (Ila) may be

expanded as

u.s csc q + (u¢ sin q), + ku sin q = 0. (12)

It is well known (Reference 2, p. 298) that the eigenvalue problem (5) has a

denumerably infinite sequence of positive eigenvalues which may be ordered so

that

0 < X1 < X 2 3 -  
......

as well as a corresponding sequence of linearly independent eigenfunctions u,

u2 , . . . The smallest positive eigenvalue X1 for this problem is known as the

fundamental eigenvalue. In this paper, the fundamental eigenvalue of equation

(12) will be determined for the following two cases: (1) when D is the interior

R of a spherical triangle, and (2) when D is the exterior S of a spherical

"triangle" which has degenerated to a line in the special situation: 9 = 0. In

both cases, the boundary condition (11b) applies. In order to solve the
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second-order elliptic partial differential equation (12) in two independent vari-

ables 8, 0, a finite difference approximation is derived. The resulting finite

difference equations are written in matrix form and then solved by the iterative

method of point successive overrelaxation. Upon convergence of this iterative

method, the fundamental eigenvalue is found by iteration utilizing the power

method as applied to the finite Rayleigh quotient. Numerical results for a num-

ber of cases are presented and then discussed.



SECTION II

FINITE DIFFERENCE APPROXIMATION

In the following, the domain D on the spherical surface is taken to be the

interior R(6, a, b) of a spherical triangle, with 0 < @ < 2ir. Then the two-

dimensional spherical surface may be mapped directly onto the 8, -plane in the

manner that cartographers would refer to as Mercator's projection in the case of

the Earth's surface. The spherical wedge-shaped surface bounded by the merid-

ional arcs 0 = 0, 0 is thus mapped into the plane rectangle bounded by the two

pairs of parallel lines, 8 = 0, 8 and 0 = 0,77. The are of the great circle form-

ing the third side of the spherical triangle, specified by equation (8), is mapped

into a continuous curve extending from the ordinate axis 8 = 0 to the parallel

side of the rectangular region, 0 =7, and lying wholly within the rectangular

closed region (see Figure 2).

In problems involving elliptic partial differential equations for which an

analytic solution is not known, such as equation (11), the method of finite differ-

ences is most commonly employed to determine numerical results. This finite-

difference technique involves first establishing a network of grid points through-

out the rectangular region of interest occupied by the independent variables a

and 0. Suppose, for the moment, that positive constant grid spacings of he and

h are chosen in the 6- and 0-directions, respectively. Then the rectangular

network consists of the grid points

(pi' ) = (iho, jho), i = 0, 1, 2, .... , No; (13)

j = 0, 1, 2, ...... No.

Here the positive integers N., N¢ represent the number of grid intervals (or

grid points less one) in the 0- and p-directions, respectively, so that

he N = 0, (14a)

hN .= T. (14b)

6
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(1,NO)(2, N) SOUTH POLE OF SPHERE

_ (N0,N)
EXTERIOR OF

SPHERICAL TRIANGLE

S- GREAT CIRCLE ARC

/ INTERJOR OF FORMING SPHERICAL
I t- I- TRIANGLE SOUTHERN

I o 111BOUNDARY:
SPHERICAL TRIANGLE z=ax+by

MERIDIONAL
ARC BOUNDING
SPHERICAL
TRIANGLE
(IN x,z-PLANE)

(0,3) ----------------

(1,2)(2) 0- MERIDIONAL ARC

(02) - - - - - - - - - - - BOUNDING SPHERICAL
IT I ~TRIANGLE

(1 1)(2,1) (3,1)
(0,1) 1 (No,1)

(N,0)

0(1,0) (2,0) (3,0) NORTH POLE OF SPHERE O

Figure 2. Network of grid points Bi , 0 superposed over the spherical
wedge-shaped surface containing the spherical triangle mapped onto a
plane rectangular region



In this manner, the continuous problem (11) is discretized by the replacement of

the connected open domain R of the independent variables 0, ¢ with a finite set

of grid points 8i , Oj (see Figure 2). If the exact solution to the partial differ-

ential equation (12) is denoted u = u(8, 0), then let its approximation, to be de-

termined at each grid point by the method of finite differences, be

U = U(0 i , ,) = U, . The partial derivatives involved in equation (12) will then

be approximated by suitable finite-difference expressions involving h. , h and

Ui, j . This procedure leads to a finite system of simultaneous algebraic equa-

tions in the Ui, j , whose values may then be determined.

In order to approximate the second-order partial derivative in the first

term of equation (12), use is made of the centered second difference quotient,

i (15)u., - 1 (Ui+1, j - 2Ui, j 
+ Ui-1, j)' (15)

h8

which has an error of order h . Formula (15) arises by performing a Taylor's

series expansion about the central value Ui, j (Reference 3, pp. 430-431). In

considering partial derivatives in the q -direction, the nature of the singularity

at the north pole, where two boundaries of the spherical triangle meet at a point

with a discontinuous tangent (i.e., a corner), must be taken into account. For

this reason, variable grid spacing in the O-direction is introduced. Define

h0,j = j - 1 > 0, j = 1, 2, .... , No (16)

as the variable grid spacing parameter in the 0 -direction. Then equations (13)

and (14b) are seen to hold only for the case of constant grid spacing in the

0-direction. Now further define the midway (or averaged) grid points,

j+1/2 * + Oj+ 1 )

j = 1, 2, ..... , N - 1. (17)

21
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With these further definitions, the arrangement of grid points is as shown in Fig-

ure 3. The first-order partial derivative appearing in the second term of equa-

tion (12) may now be approximated by a centered midway first difference quotient,

(u sin #)= (u)i, j+l/2 sin Oj+1/2 - (u)i j-1/2 sin OJ-1/2 (18)(U, (h (18)

In equation (18), the error is of order h j, and in order to approximate the

terms involving u¢, a centered first difference quotient is employed:

- Ui,j+1 - Ui, j
(U )i, j+1/2 h , j+1

(19)

Ui, j ,j-1
(Ub)i, j-1/2

Combining equations (18) and (19) results in the approximation,

(u s in 2 sinj+1/2  Ui j+I -U ,j

(u sinj+1 h j  h, j+1

(20)

2 sin O /2 U.i j - Uij 1

hq, j+1 + , j h , j

The finite difference approximation to equation (12) may now be written, by use

of equations (15) and (20), as

cse . 2 sin( U_ _- U
(Ui+l,J - 2Uij + U i-_'j) + +1/2 J

h2 h , j + 1 + j , j +1

(21)

2 sin -1/2 - U +i

+- h +h +Uij sin = 0.
ho, j+I + 4, j ( ,
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--- 7-
( i-1, + )  j+l) (i+1 j+ ) 1

(0i -, o/)) (0i, 0', (0i , 0 )

* GRIDPOINTS

* MIDWAY (AVERAGED)

he I he GRID POINTS

Figure 3. Arrangement of grid points with grid
spacing parameters indicated
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Multiplying equation (21) by the factor (h., j + + ho, j ) and re-arranging terms

yields a symmetric five-point difference equation of the form:

a Ui, - b Ui+ 1 ,j - cjUij+1 - b jUi-l, j - clUi I-1

-ke Ui, j (22)

where

csc .
b. (23a)b h (h'+ + h, (23a)

2 sin l
C = , (23b)
J h , j +

ej = (hj+l + h, j) s in , (23c)

and

a. =2b + + Cj. (23d)

In terms of grid points in the 0-direction, by virtue of equations (16) and (17),

b. = > 0, (24a)

h sin j

2 sinl(j + j+1)
c. = > 0, (24b)

j+ 1 - Oj

and

e. = (€j+I - Oj-1) sin j > 0. (24c)

It is to be noted that equations (24a) and (24c) hold for j = 1,2, . . . , N - 1, while

equation (24b) holds for the less restrictive range, j = 0, 1, 2,..., No - 1. In

this way, equation (23d) also is valid for j = 1, 2,. ., Nk - 1. The finite dif-

ference equation (22) is an approximation to the continuous partial differential

equation (12), which is valid for the interior R of the spherical triangle. Thus,
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equation (22) holds for all rectangular interior grid points, i = 1, 2, . . . , N - 1;

j = 1, 2, . . . , No - 1. (Grid points exterior to the spherical triangle southern

boundary arc will be taken into account in the following discussion.)

The boundary conditions (11b) must be imposed on the discretized version

(22) of the eigenvalue equation. With reference to Figure 2, it is seen that

U0j :0 for j = 0, 1,2,... , N, (25)

UNO, = 0I
along the meridional boundaries (7a) and (7b), respectively, and U. j = 0 for

those grid points (i,j) such that

cot q5 < a cos 6. + b sin 0.. (26)

In the relation (26), equality occurs for grid points that coincide with the arc of

the great circle forming the southern boundary (8) of the spherical triangle, while

inequality occurs for grid points in the exterior of the triangle. Furthermore,

U. = 0Ui0 = 0 for i= 0, 1, 2,.. ,N (27)
UiO = 01

at the north and south poles of the sphere, respectively, since the former lies on

the boundary of the spherical triangle and the latter in the exterior of the triangle.

In the limiting cases of a, b - - co (either or both), the triangle boundary, accord-

ing to equation (8), includes the point = rr, the south pole, and the boundary con-

dition (27) is still valid.

Variable grid spacing was adopted in equation (16) for the C-direction in

order to allow for the effect of the singularity at k= 0, the north pole. In accord

with this choice, grid points in the C -direction are specified by
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for j = 0, 1, 2, ... - N ;

Cj = (28)
1 1

7T- N for j =2N + 1, .N + 2, ... , No,

where N kis assumed to be an even integer and y is a positive constant param-

eter which defines the c-grid spacing. If y = 1, then formula (28) reduces to a

uniform grid spacing in the O-direction, as specified in the network formulas

(13) and (14b) and for which the integer N, need not be even. If y > 1, the

density of grid points increases toward the poles, 0 = 0 and N, =7T, and de-

creases toward the equator, N/2 = -/2. Conversely, if y < 1, then the density

of grid points increases toward the center and decreases toward the poles. For

all y, formula (28) specifies grid points in the 0 -direction which are symmetri-

cally placed about the center point or equator.



SECTION m

ITERATIVE SOLUTION BY SUCCESSIVE OVERRELAXATION

In order to apply the iterative method of solution by point successive over-

relaxation to the finite difference equation (22), it is advantageous to adopt a

matrix formulation of the problem. Let U represent the ordered set of unknown

values U., j written as a vector of (N. - 1)(N¢ - 1) components defined on the

network of rectangular interior grid points (Oi,qj ), i = 1, 2, 3, . . . , No - 1;

j = 1, 2, 3, . . . , Nk - 1. Then the finite difference equation (22), with the bound-

ary conditions (25), (26), and (27) included, may be written in matrix form as

AU = XEU, (29)

where A and E are square matrices of order (N. - 1)(Nk - 1).

An example of this matrix formulation for the special case of Ne = 4, N = 6

appears in Figure 4. The vector U has a component associated with each rec-

tangular interior grid point, and these components are numbered by a so-called

natural ordering of the grid points (Reference 4, p. 187; Reference 5, p. 454) in

which successive horizontal grid lines (see Figure 2) are scanned in order of

increasing i index with the j index increasing on each new line, rectangular

boundary grid points excluded. In this way, the r th component of U is associ-

ated with the grid point (9i, Ij ) such that r = i + (j - 1)(No - 1).

In general, the matrix A will be sparse, with the non-zero elements a

along the principal diagonal, -b along the two adjacent diagonals (with zeroes

interspersed along these adjacent diagonals), and -c along two other diagonals

symmetrically removed from the principal diagonal by (N0 - 1) elements, the

number of rectangular interior grid points along a horizontal grid line. Since

aj, bj, and cj are all positive, by equations (23d) and (24), A consists of posi-

tive diagonal entries and non-positive off-diagonal entries. Furthermore, it is

14
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a -b 0 - 0 0 0 0 0 0 0 0 0 0 0
aI  -bI I-c

-b i  a1  -b 0 -c 1  0 0 0 0 0 0 0 0 0 0

0 -b I  a I  0 0 -c 1  0 0 0 0 0 0 0 0 0

-c O 0 a 2 -b 2  0 -c 2  0 0 0 0 0 0 0 0

0 -c 1  0 -b a2  -b 2  0 -c 2  0 0 0 0 0 0 0
I I I

0 0 -c 1  0 -b 2  a2  0 0 -c 2 ; 0 0 0 0 0 0
I I

A= 0 0 -c 2  0 0 a 3  -b 3  0 -c 3 0 0 0 0 0

I 3 3

A 0 0 0 0 -c 0 -b a-C -b -c 0 0 0 00 0 0 0 0 -c 2  0 -b 3  a 3  0 0 -c 3  0 0 0

0 0 0 0 0 0 ,-c 3  0 0 a 4  -b 4  0 -c 4  0 0

0 0 0 0 0 0 0 -3 0 -b 4  4  -b 0 -c 4  0

0 0 0 0 0 0 0 0 -c 3  0 -b 4  a4  0 0 4
L --------- L --------

0 0 0 0 0 0 0 0 0 -c 0 0 as  -b s  0

0 0 0 0 0 0 0 0 0 0 -c 4  0 -b as  -b 5

0 0 0 0 0 0 0 0 0 0 0 -c 4  0 -b s  as

U [U 1 U 2 U 3 1 U 1 2 U 2 2 3 2 U 1 3 2 3 3 3 U 1 4 U 2 4 U 3 4 U 1 5 U 2 5 U 3 5 T

E = diag[e le l e e 2 e e e3 e3 e 4 e e e e

Figure 4. The square matrix A of order (N. - 1)(N€ - 1) = 15 with

tridiagonal and diagonal submatrices indicated, the vector U of 15
components (the superscript "T" indicates transpose), and the
square diagonal matrix E of order 15 for the special case N. = 4,
N = 6
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seen that A is a symmetric matrix. There is a partitioning of A, as indicated

in Figure 4, which results in the following block tridiagonal form:

A C, O
C1  A2  C2

C2 A C
A 2 3 (30)

O CN- 2  -
The partitioning of A in this manner results from placing all rectangular interior grid

points along a particular horizontal grid line into a block. In equation (30), each

square diagonal submatrix A , j = 1, 2, . . . , No -1 is itself tridiagonal and of

order (No - 1). The off-diagonal submatrices Cj, j = 1, 2, . . . , No - 2 are

likewise square and of order (N. - 1) but diagonal in form. These character-

istics follow from the fact that equation (22), which determines the form of A,

is a five-point symmetric difference approximation. The non-zero entries of

the submatrix A consist of the coupling coefficients of a grid point with its

immediate grid neighboring points on the same horizontal line, while the sub-

matrix C. consists of diagonal entries representing the coupling coefficients

of a grid point with its immediate grid neighboring points on the horizontal lines

vertically above and below.

The matrix E in equation (29) is square, of the same order as A, and diag-

onal with positive entries, by virtue of equation (24c). Finally, note that the

entries of A and E depend only on the j-index and are independent of i.

Now, define a square matrix V of order (N, - 1)(NO - 1) by V = E1/2U,

where E 1/2 is the diagonal matrix consisting of entries which are equal, re-

spectively, to the square roots of the elements of E. With this definition, equa-

tion (29) may be transformed to
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iV = E-1/ 2 AE-1/ 2 V = XV, (31)

through pre-multiplication by the diagonal matrix E -1/2, the inverse of E 1/2

formed by taking reciprocals of the respective diagonal entries of E 1/2. The

matrix A - E - 1/2 A E - 1/ 2 , transformed from A by the pre- and post-

multiplication of a diagonal matrix, retains the symmetry property of A.

In order to determine the fundamental (or smallest) eigenvalue of the matrix

A, an iterative procedure known as the power method (Reference 5, pp. 147 ff;

Reference 6,pp. 355-356) will be utilized. As applied to problem (31), the

algorithm for the power method involves the sequence of vectors defined by

V(m+l) = (m) -1V(m), m = 1, 2,...., (32)

where the sequence of scalars X(m) is given by

() = (V(m V()) , m= 1, 2,.... (33)
(A-1V(m), V(m))

The limit of the vectors V(m) as m- co is the eigenvector associated with the

fundamental eigenvalue of A. The fundamental eigenvalue, in turn, is approximated

by the finite Rayleigh quotient (33), which involves a ratio of inner products. In

terms of the original vector U of equation (29), it is seen that U(m) = E - 1/ 2 V(m)

and A71 = E 1/ 2 A-1 E 1/2, so that equation (32) becomes

U(m+l) X(m)A-1EU(m), m= 1, 2,.... (34)

Furthermore, the Rayleigh quotient (33) in terms of the original vector U is

equivalent to

(m) (m)) , m= 1, 2, .... (35)

(A-1EU(m), EU(m))

As an initial estimate for the iterations (34), U ( 1) is defined so that components

associated with grid points interior to the spherical triangle T (a subset of the
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rectangular interior grid points enumerated by the subscripts i = 1, 2, 3, . ..,

No - 1; j = 1, 2, 3, ..., N - 1) are assigned the value unity and components

associated with grid points coincident with the spherical triangle boundary or

exterior to T are assigned zero values. That is, U 1) = 0 for those rectangular

interior grid points satisfying relation (26), and U- = 1 for those rectangular

interior grid points which satisfy the reverse inequality:

cot fj > a cos O i + b sin Oi.

In order to implement the power method as expressed by equations (34) and

(35), it is necessary to solve equations of the general form AU = F for the vector

U, where F represents the vector iterates EU(m ) . For this purpose, the iterative

method of point successive overrelaxation is applied to the system of linear equa-

tions (22). This method (Reference 4, pp. 58-59, for example) produces iterates

U(k) whose components are given by

U(k+l) [bUU(k) + cU(k) ( 1)a. i+1,j 1,i+j + i-1,j

+ c 1 U(k +Fij]+ (1 - ) k= 1, 2,.... (36)

In equation (36), w is the scalar relaxation factor (evaluated by a method to be

described), and the superscripts k and (k+l) indicate an iteration process dis-

tinct from the m-iterates specified in the power method described above. In fact,

the vectors U and F that appear in equation (36) depend upon the iteration index

m, although this has not been indicated explicitly, in order to preserve legibility.

Note that, according to equations (23d) and (24), aj j 0, so that singularity prob-

lems do not arise. The k-iterations arising from use of equation (36) will be

called the inner iterations, so as to distinguish them from the m-iterations

arising from use of equations (34) and (35), which will be called the outer itera-

tions. The vectors F are defined by F(m) = EU (m) and are k-independent
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(i.e., constantfor the inner iterations). Since E = diag (ej), the following compo-

nent relationship holds:

Fi, j = ejUi,j, for i = 1, 2,..., N - 1; j = 1, 2,...,N - 1. (37)

The range of indexing for the i, j subscripts shown in equation (37) also applies

to the inner iterations (36). During the inner iterations, the convergence

parameters,

6(k) max Iu(k 1) - uk , k = 1, 2,... (38a)
1 < i No -1
1- j <N - 1

and

r(k) (k) / (k-), k= 2, 3.... , (38b)

are calculated for use in the evaluation of the relaxation factor wo. Before dis-

cussing this evaluation procedure, it is worthwhile to note that the theoretical

demonstration of convergence of the successive overrelaxation iterates (36) for

any initial vector U( ) chosen follows from the Ostrowski-Reich theorem

(Reference 7, p. 123) for a relaxation factor in the range 0 < & < 2. This

theorem depends upon the positive definite property of the matrix A, which in

turn follows (Reference 4, p. 23) from the fact that A may be shown to be a

symmetric irreducibly diagonally dominant matrix with positive diagonal entries,

by virtue of equation (23d) and certain graph theoretic arguments (Reference 4,

p. 20).

Although the method of successive overrelaxation will converge for all re-

laxation factors c such that 0 < w < 2, the most rapid convergence occurs for

an optimal value denoted Wp , where 1 < ,pt < 2. A theoretical expression

for wopt exists (Reference 4, p. 110) since the Jacobi matrix associated with

the matrix A is cyclic of index 2. This expression depends on the spectral
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radius of the associated Jacobi matrix, a quantity that is not, unfortunately, known

a priori. In order to overcome this difficulty in determining ,pt, described

(Reference 6, p. 257) as "perhaps the most important problem" in the practical

use of successive overrelaxation, a numerical technique (Reference 6, pp. 369-370)

utilizing the point Gauss-Seidel iterative method is applied. If w is set equal to

unity in equation (36), then the second term on the right side of the equation van-

ishes and the successive overrelaxation method reduces to the point Gauss-

Seidel method. In this case, the ratio of maximum component norms for succes-

sive inner iterates of the vector U defined in equations (38) will converge to a

value,

lim r(k) = r 1, (39)
k- co

equal to the square of the desired spectral radius of the associated Jacobi matrix

mentioned above. Then %p t can be computed by the formula

p =  (40)

A method for defining a vector relaxation factor w = w , dependent upon the grid

spacing parameters N¢ and j in the 0-direction and not requiring Gauss-Seidel

iterations, for use in the successive overrelaxation method (36) was also

attempted, but without convergence success.

In the implementation of the numerical technique described above, four addi-

tional convergence parameters are selected initially before the finite difference

approximation is applied. Two of these parameters, EINNER and EOUTER ' are

specified small positive numbers such that

0 < INNER' EOUTER < < (41)

and which are used as criteria for evaluating the convergence of the inner and

outer iteration schemes, respectively. Two other parameters, kmx and rm, x
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are specified positive integers, the first of which is used to effect the convergence

of r in equation (39) and also as an upper bound on the number of inner iterations

permitted and the second of which is used simply as an upper bound on the num-

ber of outer iterations permitted. These four pre-selected parameters are utilized

in the numerical implementation as follows, in a modification of a method sug-

gested (Reference 6, pp. 375-376) for the solution of the finite eigenvalue problem

on a digital computer. First, the point Gauss-Seidel iterative method (36), in

which a = 1, is applied using the initial vector estimate U 1) , as previously de-

scribed. After each such inner iteration is completed, the norm E(k) is COm-

puted by equation (38a). If for some value of k in the range 1 k < kma x (say

k= K), it is found that E(K) < EINNER ' then the inner iterations are regarded as

having converged and r is taken to be the value r(K) and copt is computed by

formula (40). Henceforth, all subsequent inner iterations use the point successive

overrelaxation method (36), in which w = wp t (r(K)), and an initial vector esti-

mate is computed as described below. If, however, E( k) > EINNER for all

k = 1, 2, . . . , k X , then the inner iterations do not converge and r is set equal

to r ( k m a x ) and wopt is computed using this value for r. Henceforth, all subse-

quent inner iterations use successive overrelaxation in which & = WOpt (r (kmax)).

In the latter instance, the non-convergence of the inner iterations is disregarded

during the first (m = 1) outer iteration. However, if, in any subsequent (m = 2,

3, . . . ) outer iteration, the inner iterations fail to converge (i.e., E(k) E INNER

for all k = 1, 2, . . ., kmax ), then the eigenvalue problem is regarded as non-

convergent. In such case of problem non-convergence, the problem may be

attempted again by properly adjusting the pre-selected convergence parameters,

e.g., by increasing the value of k max or that of INNER or both.

When convergence of the inner iterations is achieved (or, alternatively, after

k axinner iterations during the first outer iteration), then the Rayleigh quotient
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(35) may be used to approximate the fundamental eigenvalue X(m) for the mth

outer iteration. The vector inner products on the right side of equation (35) may

be written in component form as J(m) = P/Q, where

Ng-1 N -1 F?
P = (U(m), EU(m)) = (42a)

i=1 j=

and

Q = (A-1EU( m ) , EU(m)) = Fi, J Ui, j (42b)

In the double summation expression (42a), the vector EU is given by the compo-

nents F., while the vector U (prior to initiation of the most recent set of inner

iterations) must be retrieved by the ratio Fi, j /ej of components. In the double

summation expression (42b), the vector A71 EU (following completion of the most

recent set of inner iterations) is given by the components Ui, j upon convergence

of the inner iterations. Now, for the second and all subsequent outer iterations,

convergence of the outer iterations and of the approximation to the fundamental

eigenvalue occurs when

X(m) -k(m-1).< <OUTER' 2 m mmax. (43)

In this event, X(m) is the calculated fundamental eigenvalue which approximately

satisfies the eigenvalue problem (11). If, however,

IX(m) K(m-1)I > OUTER (44)

for all m = 2, 3, .. , ma , then the fundamental eigenvalue does not converge

within the allotted number mm,, of outer iterations. This situation may be

alleviated by properly adjusting the pre-selected convergence parameters, e.g.,

by increasing the value of m ma or that of OUTER or both. Finally, if inequality

(44) is satisfied for some outer iteration m, where 2 - m < mma , then the outer

iteration procedure has not converged, but the vector U is re-initialized for the
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inner iterations utilizing point successive overrelaxation (36) by the power method

(34), which may be written in component form as

+l) = km)U(m), for i = 1, 2,..., N - 1; j =1, 2,..., N - 1. (45)

In equation (45), the vector components on the right side are those that result

following completion of the inner iterations for outer iteration m. The vector

components on the left are those to be utilized as the initial vector estimate for

the first (k = 1) inner iteration of outer iteration number (m + 1) as well as the

components to be used in re-evaluating the vector F by equation (37).

This completes the discussion of the iterative method of solution of the finite

difference equations by point successive overrelaxation and the subsequent iter-

ative determination of the fundamental eigenvalue by the power method utilizing

the Rayleigh quotient. Application of these techniques is clarified by the algo-

rithmic presentation within Appendix A of the methods discussed in Sections II

and III.



SECTION IV

ANALYTIC SOLUTIONS FOR SPECIAL CASES

In this section, the elliptic partial differential equation (12) will be solved

analytically, or exactly, for certain special cases, although, as has been re-

marked previously, an analytic solution is not known for the general case. The

exact solutions to be found will be useful in providing checks upon numerical

calculations based upon the finite difference approximation.

In order to solve equation (12) analytically, the separation of variables

technique will be employed (Reference 2, pp. 510-512), in which

u(0, k) = X(0) Y(). (46)

Substitution of the separated form (46) into equation (12) yields, after

re-arrangement,

1 d2 X(0) _ sin d2Y() + dY(q) cos )+ X sin 2 " (47)
X(O) dO2  Y() \ d 2 d

Since the left side of equation (47) is a function of 8 only, and the right side of

the equation is a function of 0 only, both sides may be set equal to a separation

parameter k 2 , a constant independent of both 0 and 4. In this case, the equation

for 0,

d2X(0)
dx( + k 2 X(6) = 0,

d9 2

is readily seen to have the solution

X(0) = A sin kO + B cos k8, (48)

where A and B are constants. The boundary condition (11b) requires that

u(0,0) = u(8 ,0) = 0, so that the solution (48) becomes

X(0) = A sin (7) 6, (49)

24
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where k =-T / is chosen so that X(O) vanishes only at the endpoints of the in-

terval 0 6 . 0 . The equation for 0, from equation (47),

sin2  d2y( ) + sin cos 0dY() + (X sin 2  - k 2 ) Y(o) = 0,
d02 do

may be transformed by the substitutions cos 0 = z, Y(cos 0) = v(z) to the follow-

ing form:

(1 - z2) 2 d2 v(z) 2z(1 - 2) dv(z)+ (l- z2 ) - k2] v(z) = 0. (50)
dz 2  dz

The solutions to equation (50) are known (Reference 2, pp. 327, 511) to be the

associated Legendre functions of order k,

v(z) = Pk(Z) ( - Z )k/2 dk Pn(z), k = 0, 1, 2,..., n, (51)
dz k

where n is defined by X = n(n+ 1). The Legendre functions of order zero,

P (z) = P (z), are polynomials in z of degree n.

Consider the special case k = n. For this choice, the derivative factor in

equation (51) reduces to a constant and v(z) becomes a multiple of (sine)k. In

this case, the solution (46) is

u(8, )=Asin (sin ) (52)

where A is an arbitrary constant, and the corresponding eigenvalue is

0 + 1).

Note that for A 0, the eigenfunction (52) vanishes only for 6 = 0, 8 and = 0, n

in the domain 0 < < 0E < 2 7T; 0 < < 7T. Thus, equation (52) represents a solu-

tion for the case in which the spherical triangle has degenerated to a two-sided

spherical wedge-shaped domain bounded by meridional arcs extending from

the north to the south pole. In fact, it may be readily demonstrated that the
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eigenfunction (52) satisfies equation (12) by direct substitution, and, as noted,

it further satisfies the boundary conditions (11b). Hence, the eigenfunction (52)

is an exact analytic solution to problem (11), where

= +1

for any 8 in the range 0 < 8 < 27T. The original restriction of the solution (51)

that k = n = 7 /8 be a positive integer may thus be removed in this special case.

In terms of the constant parameters a,b of inequality (9), the wedge-shaped

domain is specified by the limits a = 0,b -- co when E < rr; however, when a > 7r,

the wedge does not appear as a limiting case of the spherical triangle.

Now consider the special case k = n - 1. For this choice, the derivative

factor in the associated Legendre function (51) reduces to a term linear in z.

This term linear in z is, in fact, merely a constant multiple of z, since the

Legendre functions Pn (z) are polynomials in z containing terms only of even

or odd powers of z, depending as n is even or odd, respectively. It is seen

then that v(z) is a multiple of (sin $)k cos 0 in this case, and the solution (46)

is

u(, ) = As in 0) (sin 0)'8 cos , (53)

where A is an arbitrary constant, and the corresponding eigenvalue is

k=n(n + 1)= (k+ 1) (k + 2)=( + 1) (+ 2)

For A j 0, the eigenfunction (53) has the same zeroes as that of the previous

eigenfunction (52), viz., 0 = 0, 0 and ¢ = 0,7T, and, in addition, it vanishes for

- 7T/2. Thus, equation (53) represents a solution for the spherical triangle

defined by the domain 0 < 6 0 < 2n7; 0 T < r/2. Equivalently stated, this
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triangle is bounded by two meridional arcs and the equator, specified by setting

a = b = 0 in inequality (9). In this special case also, the eigenfunction (53) may

be shown to satisfy the elliptic partial differential equation (12) by direct sub-

stitution. The boundary conditions (11b) are fulfilled for the particular spherical

triangle described above. Hence, the eigenfunction (53) is an exact analytic solu-

tion to problem (11), where

X=( +1)( +2)

for any 0 in the interval 0 < 0 < 2n. The original restriction of the solution (51)

that k = n - 1 = ,/0 be a positive integer may be removed in this special case

as well.

Consideration of further special cases obtained when k = n - 2, n - 3,

does not lead to spherical triangles which can be readily identified, so this course

will not be pursued. However, it is of interest to consider the two special cases

described above in the event that E = 2 7, a possibility that was specifically ex-

cluded in previous discussion. With 0 = 2 7, the solution (52) becomes

u(O, 0) = A sin2 (sin ) 1/2
2

and the corresponding eigenvalue is X = 3/4. Also, the two-sided spherical

wedge-shaped domain now becomes the entire surface of the sphere except for

a boundary great circle are extending between the north and south poles. This

particular domain may be viewed equivalently as the exterior of a spherical

triangle in the limit when 0 = 0. Such an equivalent view will be of significance

in the discussion of Section VI. In the second special case, the solution (53)

becomes u( , €) = A sin(8/2)(sin 0)1/2 cos 0, and the corresponding eigenvalue

is X = 15/4. In this instance, the spherical triangle domain degenerates to the

entire upper hemisphere except for a boundary great circle are extending from

the north pole to the equator, and the domain is defined by the values a = b = 0,

0 = 2r.



SECTION V

DISCUSSION OF NUMERICAL RESULTS

The iterative solution of the finite difference equations by successive over-

relaxation has been adapted to an electronic digital computer program for cal-

culating the fundamental eigenvalue of a spherical triangle. The mathematical

and theoretical basis for the solution has been discussed previously in Sections

II and II, and the algorithm for the calculation is presented in Appendix A. In

the present section, numerical results for a number of cases of interest are

presented and discussed.

The first series of spherical triangles to be considered consists of triangles

containing two right angles where the boundary great circle arcs are formed by

the equator z = 0 and two meridional arcs. In terms of the spherical triangle

parameters, such a triangle is specified by a = 0, b = 0 and 0, where 0 < 8 < 2 r.

It will be recognized that this particular case was solved analytically in SectionIV

for the fundamental eigenvalue

Table 1 displays calculated values for the fundamental eigenvalue X for each of

three values for the spherical triangle parameter 0 and for various rectangular

grid parameters, Ne and NO. All the grids utilized a grid spacing parameter

Y = 1, i.e., the grid spacing in both the 8 - and 0-directions was constant, as

specified in equations (13) and (14). The criteria adopted for iterative conver-

gence for use in this table and in all other numerical results discussed herein

are INNER = OUTER -10-6 . For comparative purposes, the exact value for the

fundamental eigenvalue, as determined from the analytic relationship = X(08) is

also shown in Table 1. Other columns in Table 1 include the calculated value for

the optimal scalar relaxation factor co, the required number m of outer iterations

28



Table 1
Fundamental Eigenvalues of Double Right Spherical Triangles (a=b=0)

Using Constant Grid Spacing in the €-Direction (y=1)

Spherical Rectangular Fundamental Optimal Required Required Required
Sphericale Grid Eigenvalue Scalar Number of Number of Number of
PaTriangle Parameters Relaxation Outer Gauss-Seidel S.O.R. InnerParameterFactor Iterations Inner Iterations at

Ne  N Calculated Exact Iterations Convergence
Value Value m k1  k

7 10 10 5.831 6 1.460 8 85 24
7 20 20 5.958 6 1.695 8 100 48
7 30 30 5.981 6 1.796 8 100 71
n 40 40 5.990 6 1.860 8 100 99

77/2 10 10 11.628 12 1.506 8 100 27
7T/2 20 20 11.907 12 1.723 10 100 49
7/2 30 30 11.959 12 1.807 11 100 73
7T/2 40 40 11.977 12 1.850 11 150 97

T/3 10 10 19.338 20 1.518 12 100 27
7/3 20 20 19.836 20 1.729 13 100 50
7/3 30 30 19.927 20 1.806 13 100 78
7/3 40 40 19.959 20 1.846 13 150 110

to
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to achieve convergence in k, the required number k, = K of inner iterations to

achieve convergence of U by the Gauss-Seidel method for the first outer itera-

tion, and the required number km of inner iterations to achieve convergence of

U by successive overrelaxation (S.O.R.) for the final outer iteration. The upper

limits on the number of iterations permitted for inner and outer convergence

were initially selected to be kmax = 100 and mmax = 50, respectively. This value

for mmax was always found to be more than sufficient to promote outer conver-

gence. However, the value of kmax = 100 was not always sufficient to permit

inner convergence by successive overrelaxation. (It will be recalled from the

discussion in Section III that non-convergence of the Gauss-Seidel iterations

during the first outer iteration is disregarded.) In such cases of insufficiency,

the value of kmax was incremented by 50 successively until inner convergence

resulted. The number of increments A kmax = 50 necessary to promote inner

convergence can be ascertained by examination of the column of values for k ,.

In Table 1, it is seen that kmax = 100 was sufficient for inner convergence except

for the two N. = N = 40 grids when 8 = 7r/2 and 0 = 77/3, in which cases the in-

crease to kmax = 150 was then sufficient to promote inner convergence. Further

examination of this same column of values reveals that only in one instance (for

the N, = No = 10 grid when 0 = 7) did the Gauss-Seidel iterations converge for

k i < kma x. In all other cases, k1 = kmax, indicating non-convergence of the

Gauss-Seidel iterations during the first outer iteration. (An alternate, but less

likely, possibility is that the Gauss-Seidel iterations converged on precisely the

final permitted iteration, number km. .)

The significant results provided by Table 1 include the qualitative fact that

as the rectangular grid becomes finer (as measured by an increase in the param-

eters No and NO), the calculated value for the fundamental eigenvalue X becomes

more accurate. Quantitatively speaking, the relative error in X, given by
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(exact - Xcalculated )/Xexact , is approximately 0.03 for the N. = No = 10 grids,

0.008 for the N. = No = 20 grids, 0.003 for the N. = N = 30 grids, and 0.002 for

the N9 = No = 40 grids. These relative errors apply approximately for the three

values of the spherical triangle parameter 0, but the relative errors, for a given

set of grid parameters, are smallest for the case 0 = 7 and largest for the case

O = 7/3. Of course, use of a finer grid results in a more accurate eigenvalue

but also entails a substantially greater number of calculations to complete the

successive overrelaxation method. Note also that the convergence to the exact

value of X with increasing grid parameters occurs monotonically for each of the

three 8 values. A similar phenomenon occurs in the calculated values for the

optimal scalar relaxation factor w, viz., the values of a increase with the in-

creasing grid parameters. Finally, this same phenomenon is repeated in the

required number of inner and outer iterations. However, the increase in re-

quired outer iterations m with increasing grid parameters is negligible, while

the increase in required inner iterations km just prior to convergence is con-

siderable. Note also that the required number km of inner iterations for the

final outer iteration is generally substantially fewer than the required number

k , of inner iterations for the first outer iteration. This last characteristic may

be ascribed to the fact that the convergence criteria are invariant (equal to the

values EINNER = 
EOUTER = 10-6) throughout the iterative process. Most of the

other phenomena delineated above are due to the fact that convergence occurs

more slowly for a finer grid than for a coarse grid.

The next series of results, as displayed in Table 2, is intended to investigate

the effect of adopting a variable grid spacing in the q-direction, as discussed

previously in Section II. For this purpose, a value for the grid spacing parameter

of Y = 2 was chosen. This produces a grid in which the density of grid points in-

creases toward the poles (recall that a singularity occurs at the north pole, = 0)



Table 2
Fundamental Eigenvalues of Double Right Spherical Triangles (a=b=0)

Using Variable Grid Spacing in the O-Direction (y = 2)

Rectangular Fundamental Optimal Required Required Required
Spherical Grid Number of Number of
Triangle Parameters igenvaue caar Number Gauss-Seidel S.O.R. Inner

Parameter ation Outer Inner Iterations at
Factor Iterations

Calculated Exact t Iterations Convergence
0 Value Value k k

7T 10 10 5.750 6 1.494 8 100 25
S20 20 5.931 6 1.716 8 100 49

7 30 30 5.969 6 1.807 9 100 73
S40 40 5.983 6 1.852 9 150 97

ir/2 10 10 11.368 12 1.519 10 100 26

7/2 20 20 11.798 12 1.730 11 100 49
-/2 30 30 11.910 12 1.811 11 100 73
I/2 40 40 11.949 12 1.847 11 150 104

T/3 10 10 19.123 20 1.523 11 100 26
7/3 20 20 19.609 20 1.731 14 100 49
7T/3 30 30 19.825 20 1.801 13 100 81

n/3 40 40 19.902 20 1.847 13 150 105
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and decreases toward the equator, in a fashion symmetrically arranged about the

equator. The same spherical triangles and the same values for the rectangular

grid parameters are considered as in Table 1. The outcome of using this par-

ticular variable grid spacing on the calculated values of X is seen to be larger

relative errors in each of the 12 cases considered, as compared to the results

of Table 1 for a constant grid spacing. Hence, this method of varying the grid

spacing in the O-direction in order to account for the singularity in 0 does not

achieve the desired effect. Virtually all other qualitative characteristics noted

in the Table 1 results also apply to Table 2, however. In particular, more re-

fined grids produce more accurate calculated values for the fundamental eigen-

value, and the convergence to the known exact value for X occurs monotonically

in each of the three 9 cases.

A variable grid spacing in the C-direction based upon the parametric value

S= 1/2 was next investigated, and the results are displayed in Table 3. This

value of y produces a grid in which the density of grid points increases toward

the equator and decreases toward the poles, again in a manner symmetrical with

respect to the equator. The same spherical triangles with two right angles and

the same values for the rectangular grid parameters are considered as in Tables

1 and 2. This particular variable grid spacing produces calculated values of X

with larger relative errors than both Tables 1 and 2 for the 8 = 7 cases and for

the 8 = 7/2 cases for the coarser N, = N = 10 and Ng = N =20 grids. How-

ever, for the finer N, = N¢ = 30 and N = N¢ = 40 grids when ® = 7/2, the cal-

culated X are more accurate in the y = 1/2 grid spacing (Table 3) than in the

y = 2 grid spacing (Table 2), though not so accurate as in the constant grid spac-

ing (Table 1). For the case 8 = -/3, the result for X in Table 3 is least accurate

for the coarsest N. = N = 10 grid, but most accurate for the finer three grids,

even when compared against the constant grid spacing results. For 8 = 7/3,



Table 3
Fundamental Eigenvalues of Double Right Spherical Triangles (a=b=0)

Using Variable Grid Spacing in the b-Direction (' = 1/2)

Rectangular Required Required
Spherical Grid Fundamental Optimal Required Number of Number of

Spherical Grid Number of Number of
Triangle Parameters Eignau Scalar Number Gauss-Seidel S.O.R. Inner

Parameter Relaxation Outer Inner Iterations at
Factor Iterations

N Calculated Exact Iterations Convergence
N N Value Value k m km

7 10 10 5.118 6 1.427 8 73 22

7T 20 20 5.592 6 1.673 8 100 45

n 30 30 5.773 6 1.780 8 100 62
i7 40 40 5.856 6 1.844 8 100 85

7-/2 10 10 10.692 12 1.488 10 98 26
7T/2 20 20 11.739 12 1.713 11 100 46

7T/2 30 30 11.919 12 1.797 11 100 75

r/2 40 40 11.969 12 1.850 11 100 94

7T/3 10 10 19.061 20 1.508 11 100 27

7T/3 20 20 19.888 20 1.720 13 100 52

7/3 30 30 19.961 20 1.806 13 100 74

in/3 40 40 19.979 20 1.848 13 150 104
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the relative error in X is approximately 0.047 for the N. = No = 10 grid, 0.006

for the N, = N = 20 grid, 0.002 for the N, = N = 30 grid, and 0.001 for the

Ne = N¢ = 40 grid. These relative errors in k are considerably smaller than

those for the corresponding grids in the cases 8 = 7T/2 and 8 = 7. The conclu-

sion appears to be that variable grid spacing of the type used in the Table 3

results can produce a more accurate calculated value for the fundamental eigen-

value than that produced by use of constant grid spacing, but the relative accu-

racies depend upon the characteristics of the spherical triangle under consider-

ation. Other convergence qualities noted in the previous Tables 1 and 2 results

for the remaining parameters displayed also hold for the Table 3 results.

The abbreviated display in Table 4 considers the special case 8 = 2 n only,

in which the spherical triangle degenerates to the upper hemisphere with bound-

aries consisting of the equator and one meridional great circle are (a "slit")

extending from the north pole to the equator. This degeneracy was specifically

considered at the end of Section IV, and the analytic relationship

S= T+ 1X(+ 2

yields an exact value for the fundamental eigenvalue of 15/4. The same sequence

of values for the rectangular grid parameters is adopted in Table 4 as in the

earlier tables, and constant grid spacing in the € -direction with y = 1 is utilized,

as was the case for Table 1. Once again, the finer grids are seen to produce

more accurate calculated values of X with convergence to the known exact value

occurring monotonically, but in this instance the convergence is monotone de-

creasing. In the previous results of Tables 1, 2, and 3, the convergence was

always monotonic and increasing. Otherwise, the results of Table 4 show the

usual convergence properties noted earlier and serve primarily to verify the

analytic solution for a particular special case.



Table 4
Fundamental Eigenvalue of Slit Upper Hemisphere (a=b=O; 8 = 27T)

Using Constant Grid Spacing in the 4-Direction (y = 1)

Rectangular Required Required
Spherical Grid Number of Number of

Eigenvalue Scalar Number ofTriangle Parameters Relaxation uter Gauss-Seidel S.O.R. Inner
Parameter Facto Iter Inner Iterations at

Factor Iterations
S N Calculated Exact Iterations Convergence

Value Value k k

277 10 10 3.845 3.75 1.385 10 59 21
27 20 20 3.826 3.75 1.647 10 100 42
27T 30 30 3.806 3.75 1.760 10 100 59
27T 40 40 3.794 3.75 1.837 9 100 83
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The next series of results in Table 5 investigates another of the special cases

discussed previously in Section IV, that of the spherical wedge. It will be recalled

that the spherical wedge is a degenerate case of the spherical triangle which is

bounded by two meridional great circle arcs extending from pole to pole, and it is

specified by the limits a = 0, b - -om when 8 < -a. The exact value for the funda-

mental eigenvalue is given by

When O. = rr with a = O,b - - co, the spherical wedge becomes a hemisphere, with

fundamental eigenvalue X = 2. However, when 0 assumes a value in the range

7T < 0 5 2T with a = 0, b - - o, the domain specified is still the hemispherical

wedge, with the corresponding eigenvalue k = 2. As can be seen from inequality

(9), the only value of P in the domain for a = 0, b - - co, and 0 in the range

n < 0 < 2 7 is ¢ = 0, the north pole. For numerical purposes, the value adopted

for b in the Table 5 results was -10 9 . The standard sequence of values for the

rectangular grid parameters is adopted as in the earlier tables, and constant

grid spacing is utilized. For both the quarter-spherical wedge (0 = 7/2) and

the hemispherical wedge (0 = nT), the convergence to the known exact value of X

is monotonically increasing, as in the first three tables, with the more refined

grids. Also, the calculated values for the fundamental eigenvalue are seen to

possess considerable accuracy for all grids. Now in the cases 0 = 3 7T/2 and

0 = 2 7T, the convergence in X is also monotonically increasing with the refine-

ment in the grids, but the corresponding relative errors are larger than for the

smaller values of 0 . This is undoubtedly due to the fact that a larger propor-

tion of the grid points in the 0 = 3 77/2, 2 n cases are "superfluous," i.e., propor-

tionately fewer grid points occur interior to the spherical wedge domain than in

the corresponding cases for 8 = 7T/2 and 0 = 7T, for a given set of rectangular



Table 5
Fundamental Eigenvalues of Spherical Wedges (a=0, b-- co)

Using Constant Grid Spacing in the 0 -Direction (y = 1)

Rectangular Required Required
Spherical Grid Number of Number of

> Triangle Parameters Eigenalue Scalar Number Gauss-Seidel S.O.R. Inner
Parameter k Relaxation Outer Inner Iterations at

Factor Iterations
N Calculated Exact Iterations Convergence

Value Value k k1 m

7r/2 10 10 5.926 6 1.543 8 100 29
7T/2 20 20 5.982 6 1.750 8 100 54
7T/2 30 30 5.992 6 1.808 9 100 95

n/2 40 40 5.995 6 1.854 9 150 122

7 10 10 1.977 2 1.572 6 100 31

n 20 20 1.994 2 1.774 6 100 59

n 30 30 1.997 2 1.824 6 150 101
n 40 40 1.999 2 1.838 6 200 177

37r/2 10 10 1.828 2 1.512 6 100 26
37/2 20 20 1.852 2 1.722 6 100 48
3r/2 30 30 1.917 2 1.830 6 100 73
37r/2 40 40 1.961 2 1.848 6 150 90

27T 10 10 1.929 2 1.465 6 83 23
27 20 20 1.972 2 1.686 6 100 45
27T 30 30 1.982 2 1.788 6 100 62

2n 40 40 1.987 2 1.845 6 150 83

W.
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grid parameters. Nonetheless, convergence to the proper exact value of X does

occur monotonically for all 8 values in Table 5. Convergence properties of

other parameters displayed in the table are similar to those observed in pre-

vious results.

This concludes the discussion of numerical results obtained for all the

special cases considered in Section IV for which analytical solutions were ob-

tained, thereby providing known exact values for the fundamental eigenvalues.

A final series of results is presented in Table 6 for an archetypical case ( a so-

called oblique spherical triangle) representing a numerical solution to the gen-

eral problem for which the exact fundamental eigenvalue is not known. A family

of spherical triangles defined by the parameters a = 0, b = -1 is considered,

where 0 assumes each of the four values 7T/2, ir, 3r/2, and 27r. The oblique

plane defining the non-meridional side of the spherical triangles, as given by

equation (7c), is z = -y, and this plane forms an angle of 7T/4 with the equator.

The great circle determined by this oblique plane intersects the equator at

8= 0, n, and 277, and the interior domains of the spherical triangles appear as

shown in Figure 5. As in the results discussed previously, a standard set of

values for the rectangular grid parameters and constant grid spacing defined by

y= 1 are utilized. In three of the four E cases displayed in Table 6, the con-

vergence of the calculated values of X to an unknown exact fundamental eigen-

value is monotonically increasing with the refinement in grids, but in the anom-

alous 0 = 7 case, oscillatory behavior in the calculated values of X is observed.

No explanation for this lack of monotonicity is offered here, but this phenomenon

has been observed elsewhere (Reference 6, pp. 351-352) in the numerical calcu-

lation of fundamental eigenvalues. Furthermore, in the cases 0 = 317/2 and

0 = 27T, although the convergence shown is monotonic, it certainly is not uniform

to the extent generally seen in earlier results for the known solution special cases.



Table 6

Fundamental Eigenvalues of Oblique Spherical Triangles (a=0,b=-l)
Using Constant Grid Spacing in the O-Direction (y = 1)

Rectangular Required Required

Spherical Grid Number of Number of

Triangle Parameters Calculated Scalar Number Gauss-Seidel S.O.R. Inner

Parameter Fundamental Relaxation Outer Inner Iterations at

N9 N Eigenvalue Factor Iterations Iterations Convergence
Ne N m k kk1 km

w/2 10 10 7.392 1.520 8 100 28

n/2 20 20 7.569 1.731 10 100 49

7/2 30 30 7.633 1.809 11 100 77

n/2 40 40 7.668 1.854 11 150 100

7T 10 10 2.795 1.519 6 100 28

S20 20 3.027 1.724 7 100 52

7 30 30 3.000 1.823 8 100 76

S40 40 3.061 1.843 8 150 118

37T/2 10 10 2.435 1.476 8 90 24

37/2 20 20 2.615 1.697 7 100 47

3 /2 30 30 2.631 1.796 8 100 66

37T/2 40 40 2.664 1.844 8 150 88

27T 10 10 2.396 1.435 8 73 22

27 20 20 2.581 1.665 8 100 42

27 30 30 2.597 1.771 8 100 57

27 40 40 2.652 1.811 9 100 92

0



1 SOUTH POLE

371/4

-Cot = -sin 8

r/2 EQUATOR

7/4

NORTH POLE

S7r/2 7r 37r/2 27

Figure 5. Interior domains of oblique spherical triangles defined by the
parametric values a = 0, b= -1; 0 = 7/2, 7r, 37 /2, and 2 7(indicated by
the shaded regions tothe left of each of the four respective 0 = E values)
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The non-uniform convergence of Table 6 may well be due to the fact that the

oblique spherical triangles contain a boundary great circle arc which appears

as a transcendental curve in the two-dimensional e, #-plane (see Figure 5). In

the general problem, this transcendental curve will be present, although it did not

appear in the earlier results of this section for the special cases when all spher-

ical surface boundaries coincided with constant-value 6 and 4 great circle arcs

(i.e., lines of spherical longitude and latitude). The presence of a curved bound-

ary in the 0 ,¢ -plane requires that a series of straight line segments connecting

appropriate grid points Oi ' J be utilized to approximate the southern boundary

of the spherical triangle. As the grid parameters No , N, are changed, the pre-

cise location of the approximate triangle boundary varies. This could perhaps

explain the non-uniform convergence in the calculated values of X. The conver-

gence characteristics of the relaxation factor w and the required numbers of

iterations as shown in Table 6 are similar to those noted in the earlier results

for the special cases.



SECTION VI

PROBLEM OF A SPHERICAL SURFACE WITH A SLIT

A. The Slit Domain

In this section, the problem of determining the fundamental eigenvalue for a

domain which is the exterior of a spherical "triangle" in the degenerate case of

8 = 0 will be considered. In such a limiting case, the triangle degenerates to a

meridional great circle arc or "slit." This problem is the second of the two

cases mentioned in the introductory section for which the second-order elliptic

partial differential equation (12) will be solved by approximation methods, with

the boundary conditions supplied by equation (11b).

The slit domain D may be specified by a single slit extension parameter

which shall be denoted , where 0 < P < i7. The slit may be readily placed in a

canonical position so that it extends from the spherical north pole (intersection of

the z-axis with the unit sphere, as previously) southward along the are of a great

circle. In terms of the spherical triangle parameters utilized previously, the

value for # may be determined from equation (8) by setting 8 = 0 (hence 0 = 0)

so that the resulting value k is equal to P. It is then seen that A = arccot a =

arcsin (a 2 + 1)- 1/ 2 , with b arbitrary.

The spherical surface may be mapped directly onto the 0, f-plane in the

usual manner, as shown in Figure 6. Note that the domain of interest now in-

cludes the entire spherical surface, 0 0 iT; 0 _ 0 < 27T. A network of grid

points Oi, 0,, as defined by equation (13), is superposed over the spherical sur-

face in the manner used previously, but now the relations between the number of

grid intervals and the constant grid spacings are

hoN = 27T, (54a)

h i = n. (54b)

43
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(1,N) (2,No) SOUTH POLE OF SPHERE
S---(Ne.NOI

ho

SPHERICAL - - - - SPHERICAL
SLIT SLIT

(0,3 --- -- -- -- - -

(0,2 (1,2) (2,2)

(1,1) (2,1) (3,1)
(01 -- (No,

(1,0) (2,0) (3.,0) NORTH POLE OF SPHERE 27 (N . 0 )

0 
h, ..

Figure 6. Network of grid points .i i superposed over entire spherical
surface with a slit mapped onto a plane rectangular region
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In the 8, 0-plane, the single slit appears along some portion of three of the rec-

tangular boundaries, viz., the entire line representing the north pole 0 = 0, a

portion of the line representing the slit meridian 0 = 0, and a like portion of the

line 0 = 27 also representing the same slit meridian. Note that, in general, the

slit boundary will not terminate on a grid point.

B. Boundary Conditions

The boundary conditions (11b) to be imposed on the discretized version of

the eigenvalue equation for the problem of the spherical surface with a slit may

be deduced from Figure 6. They are

Ui,o = 0 for i = 0, 1, 2,...., No, (55)

and

Uo, j =UNe'j =0 for j =0, 1, 2,..., N, if Oj <P. (56)

The boundary conditions (55) refer to the north pole of the sphere, and the condi-

tions (56) refer to grid points coinciding with the slit meridian boundary. Note

that, in general, there are non-zero values of the grid function Ui, j occurring

along the rectangular grid boundary in Figure 6; in particular, such values may

appear along the slit meridians beyond the extension of the slit (i.e., Uo, and

UN9 j for which . > P) and at the south pole (i.e., Ui,N for i= 0, 1, 2,. .. , N).

In contrast, all grid function values occurring along the rectangular grid boundary

in the problem of the spherical triangle vanished. The finite difference equation

(22), derived as an approximation to the continuous partial differential equation

(12) for the problem of the spherical triangle, remains valid for all rectangular

interior grid points (i, j ), i = 1, 2, . .. , N, - 1; j = 1, 2, . . , N - 1 in the

problem of the spherical surface with a slit. However, it must be modified in

order to apply to the rectangular boundary grid points represented by the sub-

scriptvalues i=0,No; j=0, 1,2,... ,N if >. > andi=0, 1,2,...,No;

j = No.
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Since the rectangular boundary grid points along the line i = 0 coincide with

the respective rectangular boundary grid points along the line i = Ne insofar as

the spherical surface geometry is concerned, it is evident that the following

periodic boundary conditions must be imposed in addition to conditions (55) and

(56):

U0 ,j  =UNO9j for j = 0, 1, 2,..., NO, if Oj >P. (57)

In view of this periodicity, the finite difference equation (22) may be extended to

the line i = No by the simple device of replacing the undefined grid components

UNe+. , j = 0, 1, 2, ... , No by the respective defined grid components U1, j ,

j = 0, 1, 2, . . ., N, whenever the former occur. That is, for i = N , equation

(22) becomes in its modified form:

a.UNj - b. - c , - b N9 1 j N 1 - C. 1UN0 ,j-1N j bU -c+U -bUN_ -c U

(58)
= e UNj for j = 1, 2...., Nk- 1, if >  (58)

where aj, bj,c, and ej are defined as previously. Now the finite difference

equation (22) may be further extended to the line i = 0 merely by invoking equa-

tion (57). In order to complete the extension of the finite difference equation to

the rectangular boundary grid points, it is necessary to derive relations for the

grid points, Ui , N , i = 0, 1, 2, . . . , No, at the south pole.

C. Difference Equations at the South Pole

Difference equations pertaining to the grid points at the south pole may be

derived by integrating the partial differential equation (12) over the disc 0< 0 <2i7;

N 0-1/ 
< q~ = 7T(see Figure 7). Note that the first term on the left in equa-

tion (12) vanishes when integrated over the disc because of the 2 7T periodicity in

the 0 variable. After integrating the second term on the left in equation (12)

explicitly with respect to the ¢ variable, it is seen that
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8 Ng/4= "r/2

PNN-1

<IN-1/2

ON =r O= 0; eN-= 27

SOUTH /
POLE

e3N /4 = 37/2

Figure 7. Disc (indicated by shading) utilized to derive difference
equations valid at the spherical south pole
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- (, ON -1/2) Sin Nl/2dO + X J u sin dOd: = 0.

=0 0 1/2

The first term on the left in equation (59) may be approximated, by use of the cen-

tered first difference quotient (19), as a finite sum of the form,

S(UiN - UiN he
- h sin -1/2 (60)

The second term on the left in equation (59) may be approximated by

kUi , N( 2
7T) [- cos 011 - 2TXUi (1 + COS ONo-1/2. (61)

ON,-1/2 iN + 
cos

In equation (61) and equations to follow, it is implicitly understood that Ui

represents the unique approximate value of the solution u at the south pole for

all values of the subscript i. That is,

U 1,N Ui,N for i =0, 1, 2,..., N9. (62)

Now if the approximations (60) and (61) are utilized in equation (59) and the re-

sulting equation multiplied by the factor (2/he), it is seen that

2 sin ' oX

h N (Ui,N - i,N-1) (1 cos N-1/2) UN(63)

Define the hitherto undefined quantity eN by

e 4 (1 + cos 1 N1/2)' (64)

which, by use of equations (54a) and (17), may be rewritten as

eN = 2 N - sin N) > 0. (65)
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Equation (63) may now be written, with the aid of equations (23b) and (64), as a

finite difference equation for the grid points U. N at the south pole in the form

CN- 1 NUi, N - Ui,- = keN Ui,M. (66)
i=1

Note that the difference equation (66) is not a five-point equation, as are the dif-

ference equations (22) and (58), but is instead a (Ng + 1)-point equation. This

completes the derivation of the additional finite difference equations and bound-

ary conditions necessary to extend the solution of the problem of a spherical

surface with a slit to the complete set of rectangular interior and boundary grid

points.

D. Application of Successive Overrelaxation

In the matrix formulation of this problem, U represents the ordered set of

unknown values U,, , written as a vector defined on the network of rectangular

interior and boundary grid points Bi, Ij. The number of components in the vec-

tor U is equal to the number of rectangular interior grid points, (N. - 1)(N - 1),

plus a number of rectangular boundary grid points equal to the number of grid

points along either of the lines i = 0 or i = N. which do not coincide with the

slit, including the single point at the south pole. This number of components of

U is equal to the number of independent unknowns Ui, j to be determined from

the three finite difference equations (22), (58), and (66). Equivalently, the num-

ber of components of U is equal to the total number (N. + 1)(Nk + 1) of rectangu-

lar interior and boundary grid points reduced by the constraints of the boundary

conditions at the north pole (55), along the slit (56) and its meridional extension

(57), and at the south pole (62). Then the matrix form (29) of the finite difference

equations, with the boundary conditions included, still applies, where A and E

are now square matrices of an order equal to the dimensionality of U and with
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somewhat different properties than those enumerated in the problem of the spher-

ical triangle.

An example of the matrix formulation for the special case of N9 = 4, N¢ = 6

will now be considered, where ( = T/4 and y = 1 are assumed, so that constant

grid spacing in the P -direction results. Note that this value of 4 results in a

slit boundary whose termination does not coincide with a grid point. Figure 8

displays the network of grid points, the location of the slit boundary, and a natural

ordering of the grid points in which successive horizontal grid lines are scanned

in order of increasing i index with the j index increasing on each new line. The

rectangular boundary grid points are chosen along the line i = N and the single

point at the south pole is arbitrarily placed at the position (1, NO). The vector

U in this case has dimensionality 20, of which 15 components are associated

with rectangular interior grid points and the 5 remaining components with rec-

tangular boundary grid points. Figure 9 provides the square matrix A of order

20, the square diagonal matrix E of order 20, and the vector U for this special

case.

In general, the matrix A is sparse, with positive diagonal entries and non-

positive off-diagonal entries. Because of the fact that the three finite difference

equations (22), (58), and (66) are symmetric, the matrix A is also symmetric.

However, A no longer retains the block tridiagonal property that it previously

exhibited in the problem of the spherical triangle. The matrix E is diagonal

with positive entries, by virtue of equations (24c) and (65). The elements of both

matrices A and E depend only on the j index and are independent of i.

As an initial estimate for the power method iterations (34), U(1) is defined

so that all components are assigned the value unity, except for the zero compo-

nents associated with grid points at the north pole and along the slit boundary,

in accordance with the boundary conditions (55) and (56). In particular, components
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SOUTH POLE

(0,6) (1,6) (2,6) (3,6) (4,6)

(0,5) (1,5) (2,5) @ (3,5) @ (4,5)

0= 27/3
(0,4) @ (1,4) @ (2,4) (3,4) (4,4)

= fr/2 I (0,3) (1,3) (2,3) (3, (4,3)

= -/3
(0,2) (1,2) ® (2,2) ® (3,2) Q (4,2)

D = r/4 = ni/4

- ir/6 _

(0,1) 0 (1,1) (2,1) (3,1) (4,1)

0=0 NORTH POLE Cn

(0,0) (1,0) (2,0) (3,0) (4,0)

0=0 0=. 0=7r 0=7 0=21r
2 2

Open circles represent grid points along slit boundary (heavy line) corresponding to zero values of the grid function U.
Filled circles represent grid points corresponding to non-zero values of U.
Numbers in parentheses indicate grid point (i, j) co-ordinates.
Numbers in circles indicate natural ordering of the grid points.

Figure 8. Network of grid points for the special case
Ne = 4, No = 6, = /4, andY= 1
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a, -bI  0 O - c0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-b 1  1 -b 1  0 - c0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -b 1  a 0 0 -c 1  0 0 0 0 0 0 0 0 0 0 0 0 0 0

S -c,0 0 -b2 - -b -O 0 0 0 0 0 0 0 0 0 0 0 0

0 - 0 -b 2  a2 -b 2  0 0 - 2  0 0 0 0 0 0 0 0 0 0 0

0 0 - b 0 -b 2  b2 -b2  0 0 -C 2  0 0 0 0 0 0 0 0 0 0

0 0 0 -b 0 -b 2  a2 0 0 0 -c 2  0 0 0 0 0 0 0 0 0

0 0 0 -c 2  0 0 0 a -b 3  0 -b 3  -c 3  0 0 0 0 0 0 0 0

0 0 0 0 - c2  0 0 -b 3  a3  -b 0 0 -C 3  0 0 0 0 0 0 0

0 0 0 0 0 -C 2  0 0 -b O -b a 0 0 -C 3  0 0 0 0 0 0

0 0 0 0 0 0 -C2  0 -b 3  a3 0 0 0 - c3  0 0 0 0 0

0 0 0 0 0 0 0 -
3  

0 0 0 a4 -b 4  -b -c 0 0 0 0

0 0 0 0 0 0 0 0 -c 3  0 0 -bb4  4 -b 4  0 0 - 4  0 0 0

0 0 0 0 0 0 0 0 0 -C 3  0 0 -b 4  -b4 -b4  0 0 -C 4  0 0

0 0 0 0 0 0 0 0 0 0 -C 3  -b 4  0 -b 4  a4 0 0 0 -C 4  0

0 0 0 0 0 0 0 0 0 0 0 -C4  0 0 0 as  -b s  0 -bs  -cs

0 0 0 0 0 0 0 0 0 0 0 0 -c 4  0 0 -bs  as  -b5  0 -cs

0 0 0 0 0 0 0 0 0 0 0 0 0 -C 4  0 0 -b a s -b 5  -cs

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -c 4  -b s  0 -b a5 -cs5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -cs  -cs  -cs  -cs  4cs

U= [U 1 U 2 1 3 1U 1 2 20 3 2 U4 2 U13 U2 3 U3 3 U4 3 1 4 U 2 4 U 3 4 U 4 4 , 15 2 5 3 5 U4 5 U 1 6 ]T

E =diag[e l e l e ee 2 e2 e 2 e3 e 3 e 3 e 3 e4 e4 e4 e4 e4 e5 e 5 e 6 ]

Figure 9. The square matrix A of order 20, the vector U of 20 components
(the superscript "T" indicates transpose), and the square diagonal matrix
E of order 20 for the special case No = 4, No= 6, t= 7/4, and y= 1
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associated with the grid points at the south pole and along portions of the slit

meridian beyond the extension of the slit are initialized to the value unity.

The iterative method of point successive overrelaxation as applied to the

finite difference equation (22) produces iterates U(k) whose components asso-

ciated with rectangular interior grid points are given by equation (36). For values

of the j index such that fi > 4 , the iterates U (k) whose components are associ-

ated with rectangular boundary grid points along the line i = N. are given instead

by

u(k+l) 0 [b U(k+1) U(k) + b U(k+1)
N j i a. i 1 j + NOj+1 No-l,j

J

+C. U ( k+l l+FNl I U(k).j-1 , +FN j] (t - ) O Ne, i

for j =1, 2,, N- 1, if > ; k 1, 2,... (67)

The iterate components in equation (67) are, of course, based upon the finite dif-

ference equation (58). For j = N., the iterates U(k) whose component is asso-

ciated with the grid points at the south pole are given by

U(k+l) u (k+l)

, = U + (1 -) U k = 1, 2,... (68)
=i=

These iterates are based upon the finite difference equation (66), and because of

the uniqueness specified in equation (62), it may be seen that equation (68) is

actually independent of the i index. Singularity problems do not arise, since

N9 and CNk-1 never vanish, by definition and equation (24b), respectively.

Furthermore, it is important that the iterate components given by equations (36),

(67), and (68) be computed according to the natural ordering of the grid points

associated with the components of the vector Ui, j . Use of the natural ordering

will insure that the proper values of the superscripts k and (k+ 1), specifying

the inner iteration number, occur automatically in the calculation process.
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The vectors F that appear as k-independent constants in the inner iteration

equations (67) and (68) are defined, in accordance with the finite difference equa-

tions (58) and (66), merely by extending the definition (37) in the natural way to

include components associated with rectangular boundary grid points. That is,

with use of definition (65),

Fi, j = ejUi, , for i= 0, 1, 2,..., No; j = 1, 2,..., N. (69)

Similarly, the definition (38a) of the convergence parameters E(k) must be

extended to the full range of grid point indexing as follows:

E(k) max U k+l) - (k , k= 1, 2,... (70)

The range of the summations involved in the Rayleigh quotient (35) must likewise

be adjusted to account for the proper range of grid point indexing. The vector

inner products may be written in component form as (m ) = P/Q, where, in con-

trast to equations (42),

N F? . F 2

P = (U(m), EU(m)) = 1,+ (71a)

i=1 j=1 eN

and

No

Q= (A-1EU(m), EU(m)) = l i Uj + FNq U .o (71b)

1= 1 j=1

In the summations appearing in equations (71), components associated with rec-

tangular boundary grid points along the line i = 0 are excluded, since such com-

ponents are redundant to those along the boundary line i = No , the latter of which

are included in the summations. Also, the single components associated with the

grid points at the south pole are presented separately as the final term on the

right side of equations (71). Finally, the component form (45) of the power method

must be extended to the full range of grid point indexing as in the following:
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U M ) (m)U(mj), for i = 0, 1, 2,..., No; = 1, 2,..., N . (72)

The theoretical demonstration of convergence of the successive overrelaxa-

tion iterates (36), (67), and (68) for any initial vector U ( 1) selected follows from

the Ostrowski-Reich theorem (Reference 7, p. 123) for a relaxation factor w in

the range 0 < o < 2. As stated previously in Section III, this theorem can be in-

voked because A may be shown to be a symmetric irreducibly diagonally domi-

nant matrix which is, therefore, positive definite. Although the method of suc-

cessive overrelaxation will converge for all relaxation factors in the above range,

the most rapid convergence occurs for some optimal value &o of w in the
opt

interval 1 < w < 2. However, since in the problem of a spherical surface with a

slit, difference equations arise which are not of the five-point type, it is not true

that the Jacobi matrix associated with A is cyclic of index 2, as was the case

previously in the problem of the spherical triangle. This means that the theo-

retical expression (40) for copt no longer applies. An expression for the actual

optimal value opt Of W is not known for the current problem. However, it has

been suggested (Reference 6, p. 262) that the value of w produced by the formula

(40) may be reasonably close to the unknown optimal value pt , even when the

theoretical expression (40) does not rigorously apply. For this reason and in

light of the fact that a better method for approximating the true value of Wo is

not available, the formula (40), based upon the convergence (39) of parameters

r (k) defined in equation (38b), is retained for approximating Wpt in the nu-

merical results that follow.

The implementation of the numerical technique, as previously described in

Section III, for the solution of the finite difference equations by point successive

overrelaxation and the subsequent iterative determination of the fundamental

eigenvalue proceeds in precisely the same manner for the digital computer
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solution of the problem of a spherical surface with a slit. Application of these

techniques is clarified by the algorithmic presentation within Appendix B of the

methods discussed in the current section. In the algorithm of Appendix B, the

vector U is considered to be an array with (No + 1)(N¢ + 1) entries, so that an

entry of U is associated with each rectangular interior and boundary grid point

regardless of the value of the slit extension parameter 4. From a computational

standpoint, this device of enlarging the dimensionality of U, with the constraints

(55), (56), (57), and (62) imposed upon the entries of the array, is merely a con-

venience in indexing.

E. Numerical Results

In the numerical applications to be described, the slit extension parameter D

was assigned a range of values in the interval 0 < 0 < 7 in a systematic manner,

and for each such value of si, several rectangular grid parametric values were

considered. Table 7 displays calculated values for the fundamental eigenvalue k

for each of the values P = n( 7T/8), n = 1, 2, . . . , 7 and for the familiar gamut of

rectangular grid parameters, Ne = No= 10, 20, 30, 40. All the grids utilized a

grid spacing parameter y = 1, so that uniform ,cp -plane grid spacing resulted.

The criteria for iterative convergence remain EINNER = EOUTER = 10-6. The

description provided in Section V of the significance of the various columns within

the tables applies equally well to Table 7. The value for the increment Ak

used to promote inner convergence whenthe current value of kmax is not suffi-

cient remains at 50, as previously.

The significant results provided by Table 7 include the qualitative fact that

the calculated value of X increases with the extent of the spherical slit as meas-

ured by 1). However, the convergence in X with increasing rectangular grid

parameters for a given 1 is by no means monotonic, as generally was the case

4n 'the problem of the spherical triangle. The calculated values for the



Table 7 57
Fundamental Eigenvalues of a Spherical Surface with a Slit

Spherical Rectangular Near- Required Required Required
Slit Grid Calculated Optimal Number of Number of Number of

Extension Parameters Fundamental Scalar Outer Gauss-Seidel S.O.R. Inner

Parameter Eigenvalue Relaxation Iterations Inner Iterations at
N\ N X Factor Iterations Convergence

m k k

T /8 10 10 0.209 1.794 4 100 90
7 /8 20 20 0.193 1.900 4 200 195
/8 30 30 0.188 1.937 5 300 283

- /8 40 40 0.199 1.960 5 400 317

7T/4 10 10 0.263 1.773 4 100 80
77/4 20 20 0.273 1.883 5 200 164
7T/4 30 30 0.259 1.926 5 250 245
7T/4 40 40 0.265 1.953 5 350 271

37r/8 10 10 0.317 1.755 5 100 73
37T/8 20 20 0.325 1.874 5 200 150
37T/8 30 30 0.327 1.917 5 250 223
3w/8 40 40 0.329 1.949 5 300 242

7/2 10 10 0.427 1.722 5 100 61
n/2 20 20 0.406 1.860 5 150 133
7/2 30 30 0.399 1.910 5 200 198
7T/2 40 40 0.396 1.941 5 300 229

5n/8 10 10 0.486 1.705 5 100 56
5n/8 20 20 0.465 1.851 5 150 122
57T/8 30 30 0.457 1.905 5 200 180
5n/8 40 40 0.469 1.936 5 300 203

3n/4 10 10 0.550 1.688 5 100 51
3n/4 20 20 0.563 1.835 5 150 104
3n/4 30 30 0.544 1.884 5 200 182
37r/4 40 40 0.551 1.897 6 300 295

7/8 10 10 0.619 1.668 6 100 46
77/8 20 20 0.637 1.811 6 100 100
7T/8 30 30 0.644 1.860 6 200 169
77/8 40 40 0.647 1.880 6 300 262
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"near-optimal" scalar relaxation factor w do increase monotonically with the re-

finement in the grid, and it is also observed that for a fixed pair of rectangular

grid parameters, the calculated & increases progressively as q decreases. A

similar monotonic increase in the required number of inner and outer iterations

occurs with the grid refinement for each value of b. Note also that for a fixed

pair of N., N¢ values, the required number k m of inner iterations at convergence

increases dramatically as decreases. A parallel phenomenon is seen for the

required number k I of Gauss-Seidel inner iterations for the first outer iterations.

The change in the required number m of outer iterations, although a much more

moderate variance, exhibits a reverse trend, viz., a slight decrease with the de-

crease in P . In sum, these results indicate that convergence in X occurs more

slowly (1) for a finer grid than for a coarse grid, and (2) as the slit extension

decreases toward the north pole. Also, in comparison with the results for the

problem of the spherical triangle, the Table 7 results indicate that convergence

in X to the 10- 6 criteria requires a substantially greater number of inner

iterations and a moderately smaller number of outer iterations. The slower

convergence of the successive overrelaxation method for the problem of a

spherical surface with a slit is no doubt due to the fact that an expression for

the optimal value of o) is not available, as explained previously.

A further investigation was conducted to determine the effects of utilizing

values of 4 near the polar limits of 0 and 7 for the slit boundary. The results

appear in Table 8. It was desirable to choose two values, 1 and P2, such that

0 <. 1 < n/40 and 7T - (T/40) < D 2 < 7 in order that none of the grid points,

except those at the north pole, would coincide with the slit boundary (in the case

of D ) and in order that all of the grid points along the slit meridian, except those

at the south pole, would coincide with the slit boundary (in the case of 42 ), for all

values of the rectangular grid parameters, No = NO = 10, 20, 30, 40. The values

arbitrarily adopted that meet these criteria were D = 7T/100 and b 2 = 997T/100.



Table 8
Fundamental Eigenvalues of a Spherical Surface with a Slit

Near Slit Boundary Polar Limiting Values

Spherical Rectangular Near- Required Required Required
Slit I Grid Calculated Optimal Number of Number of

Extension Parameters Fundamental Scalar ter Gauss-Seidel S.O.R. Inner
Eigenvalue Relaxation Inner Iterations at

No  N t Factor m Iterations Convergence
6 ki k m

n/100 10 10 0.147 1.825 4 150 110
7T /100 20 20 0.123 1.919 4 250 249
7 /100 30 30 0.112 1.950 4 400 383
n/100 40 40 0.105 1.971 4 500 459

997/100 10 10 0.697 1.646 6 100 40
99n/100 20 20 0.724 1.790 6 100 87
997/100 30 30 0.733 1.843 6 200 143
997/100 40 40 0.737 1.863 6 300 222
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The calculated fundamental eigenvalues display a monotonic decrease for ( = W/100

and a monotonic increase for 4 = 99 7/100, with the refinement in grids. More

significantly, the calculated k values are in accordance with the trend noted in

the Table 7 results, i.e., K increases with (P. In addition, all the characteristics

noted in the results of Table 7 for the scalar relaxation factor co and the required

numbers of outer and inner iterations m, k1, and k m are exhibited further by the

results of Table 8. In particular, the slow convergence of the inner iterations

for T = /100 and the correspondingly rapid convergence of the inner iterations

for 4 = 99 7T/100 are emphasized in the Table 8 results.

Finally, the value of the calculated fundamental eigenvalue as a function of

the spherical slit extension parameter is graphically displayed for three of the

rectangular grids in Figure 10 (the case N, = No = 30 is omitted from the figure

for purposes of legibility only). It is seen that X versus # is a very nearly

linear relationship, with a slope dK/dP of approximately 0.2 per radian. It will be

recalled that the special case of a spherical surface with a slit parameter P = 7

was solved analytically in Section IV as a limiting case for a spherical wedge-

shaped domain. The exact value for the fundamental eigenvalue was analytically

found to be X = 3/4. The results in Table 8 for 4 = 997T/100, which are included

in Figure 10, are in excellent agreement with this theoretical result. It is also

noted from Figure 10, and the results in Table 8 for D = T /100, that the limiting

value as 4 approaches zero (and the spherical surface with a slit degenerates to

a sphere with a boundary point at the north pole) tends rather slowly to the true

value X = 0, with the refinement in the rectangular grids. Further experiments

conducted with still finer grids in which N. > 40 indicated that this convergence

of the fundamental eigenvalue toward zero did indeed proceed, albeit quite

gradually.
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Figure 10. The value of the calculated fundamental eigenvalue X
as a function of the spherical slit extension parameter P for
various rectangular grids (N. by N intervals)
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APPENDIX A

ALGORITHM FOR CALCULATING THE FUNDAMENTAL

EIGENVALUE OF A SPHERICAL TRIANGLE

1. The following parameters are given initially:

a. the spherical triangle parameters, 0, a, b, (7)*

where 0< 8 . 2n, - c<a,b <co;

b. the rectangular grid parameters, N9, N , (13)

where both N9 and N, are positive integers greater than unity,

and, in the general case, NO must be an even integer;

c. the parameter,y, defining the grid spacing in the €-direction, where (28)

7 is positive;

d. the criteria, EINNER' EOUTER' for iterative convergence, where (41)

0 < EINNER' EOUTER < < 1; and

e. the upper limits, kmax, mmax , on the number of iterations permitted for inner

and outer convergence, respectively, where both km x and mma x are positive

integers.

2. Calculate the grid spacing in the 0 -direction:

h, (14a)

3. Calculate the following vector components as constant parameters for the

iterative procedure:

6i = ihe (13)
for i 1, 2,..., N9 - 1

Mi" = a cos 8 i + b sin o0

N2 j 
7

for j = 0, 1, 2,..., 1

N-j - 9 (28)

*These equation numbers provide a reference to the discussion in the main body
of the text.
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Note: If y = 1, then the above calculations reduce to

3= J for j =0, 1, 2,..., N¢, (13; 14b)

and N, may be any positive integer greater than unity (not necessarily even).

N. = cot 4.

j = otfor j = 1, 2,..., N - 1

b j+1 - I r (24a)
h sin

2 h2 sin +

c - f or j = 0, 1, 2,..., N - 1 (24b)

ej = (j + I - 1) sin j (24c)

for j = 1, 2,..., N- 1 (23d)
a. = 2b. Cj + c (23d)

4. Impose the boundary conditions:

0  =} for j = 0, 1, 2,..., N
UN 9 , = 0 (25)

Ui,0 = 0
UiN O for i = 0, 1, 2,..., No (27)

5. Initialize U for the power method:

if (Mi - Nj) > 0, then Ui, j = 0;

for N- 1;

J = 1, 2, ... , N - 1.
if (Mi - Nj) < 0, thenUi,j 1 (26)

6. Initialize the outer iteration index (set m = 1) and initialize the scalar relaxa-

tion factor (set c = 1) for Gauss-Seidel iteration.
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7. Calculate:

Fi j = ejUi,j for i = 1, 2,..., N6 - 1;

j = 1, 2,..., No - 1. (37)

8. Initialize the inner iteration index (set k = 0).

9. Increase the value of the inner iteration index by unity, i.e., replace k by (k + 1).

Also, initialize the convergence parameter E(k) by equating it to zero.

10. Begin the iterative successive overrelaxation process:

if (M - N.) 0, then U(k+l) = 0;

if (Mi -Nj) < 0, then

U(k+ = Eb U (k) C u(k) + b U(k+)a. + i i,j+1 j i-,j

cU ( k + l )  ]+F. (1- ( k )  (36)+ j-1 i,j-1 1,j i,j'

for i=1,2,. .. , N -1;j=1,2,...,N -1.

For each i, j in this range,

if l'U(k+ 1)  (k) (k) then set (k) = IU(k+1) (k)
, ji,j 1,j ui,

otherwise, do not change the current value of e(k). This procedure determines

E(k) = max U ( k+ l ) -(k)I (38a)

1-<iN 6 - 1 '

1-<j <N- 1

11. If k 2 2, then calculate the convergence parameter

r(k) = E(k)/E(k-1). (38b)

In the case k = 1, omit this calculation.

12. If E(k) EINNER and k 2 kma , then the inner iterations do not converge

within the allotted number of iterations. If m = 1, disregard such non-convergence

and proceed to step 13. However, if m > 1, the algorithm does not converge to the

desired eigenvalue. Return to step 1.
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If E(k) > EINNER and k < kmax, then continue the inner iterations by return-

ing to step 9.

If e(k) < EINNER , then the inner iterations have converged. Proceed to

step 13.

13. Calculate the approximate fundamental eigenvalue by the Rayleigh quotient:

p = (42a)

'= 1 j l1

Q=. ( Fi, U ' U (42b)

i=1 ( j=1

k(m) = P/Q.

14. If m = 1, proceed to step 15.

If m > 1 and if k(m) - <(m-) < OUTER as in inequality (43), then the outer

iterations have converged, and k(m ) is the calculated fundamental eigenvalue.

The numerical solution is completed.

If m > 1 and if Ik(m) - k(m-1) ' > E OUTER as in inequality (44), then if

m 2 mm, the outer iterations do not converge within the allotted number of

iterations. The algorithm in this case does not converge to the desired eigen-

value. Return to step 1.

If m > 1 and if Ik(m) _ X(m-1) E OUTER , but if m < mmax, then continue

the outer iterations by proceeding to step 15.

15. Re-initialize U for successive overrelaxation by the power method:

U.(m+l) = (m)Ui ) for i= 1, 2,..., N9 - 1;

S= , 2, ... N - . (45)
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If m = 1 (and assuming that r (k) 1), then compute an optimal scalar relaxation

factor by

= 2 (40)
1 + 1 - r(k)

If m > 1, omit this calculation.

Increase the value of the outer iteration index by unity, i.e., replace m by

(m + 1), and resume successive overrelaxation by returning to step 7.



APPENDIX B

ALGORITHM FOR CALCULATING THE FUNDAMENTAL

EIGENVALUE OF A SPHERICAL SURFACE WITH A SLIT

1. The following parameters are given initially:

a. the slit extension parameter, , where 0 < 4 <1 ;

b. the rectangular grid parameters, NE, No, (13)*

where both N. and N¢ are positive integers greater than unity,

and, in the general case, N¢ must be an even integer;

c. the parameter, y, defining the grid spacing in the -direction,

where y is positive; (28)

d. the criteria, EINNER, EOUTER , for iterative convergence,

where 0 < EINNER EOUTER < < 1; and (41)

e. the upper limits, kmax, m ,ax on the number of iterations permitted

for inner and outer convergence, respectively, where both k and
max

mmax are positive integers.

2. Calculate the grid spacing in the 8-direction:

h,_ (54a)

3. Calculate the following vector components as constant parameters for the

iterative procedure:

(j)V -t

- 0i ] for j = 0, 1, 2,..., -N (28)

*These equation numbers provide a reference to the discussion in the main
body of the text.
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Note: If y = 1, then the above calculations reduce to

j = for j = 0, 1, 2,..., N¢, (13; 54b)

and N¢ may be any positive integer greater than unity (not necessarily even).

b. for j =1, 2 ,..., N- 1 (24a)
h0 sin f

2 sin- (j + +)
c. 2 for j = 0, 1, 2,..., Nk - 1 (24b)1 j+ -¢ j

e. = +1 - 1) sin (24c)
aj =2b snj + +for j = 1, 2,..., N - 1 (23d)

a. = 2bj + c. + cj_ 1  (23d)j j-J

e = 2No - sin 1 ) (65)

4. Impose the boundary conditions:

Ui,o = 0 for i = 0, 1, 2,..., No  (55)

Uo,i =0 for j = 0, 1, 2,..., N , if j < .

U = (56)UN0 , j 01

5. Initialize U for the power method:

Ui, = 1 for i= 1, 2,..., N - 1; j = 1, 2..., N

0,j

UO = I for j = 1, 2,..., No, if j > 0.

6. Initialize the outer iteration index (set m = 1) and initialize the scalar relax-

ation factor (set w = 1) for Gauss-Seidel iteration.

7. Calculate:

Fi= ejUij for i = 0, 1, 2,..., NO; =1, 2,..., N (69)
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8. Initialize the inner iteration index (set k = 0).

9. Increase the value of the inner iteration index by unity, i.e., replace k by

(k + 1). Also, initialize the convergence parameter E(k) by equating it to

zero.

10. Begin the iterative successive overrelaxation process:

(k+l) [bj U )  c. U (k) b U(k+l)
J

a+ i(k+  + F ] (1- ) U (k )  
(36)j j-i,j'

for i = 1, 2,..., N - 1; j =1, 2,..., No - 1.

Following the above computation for i = Ne - 1; j, compute:

u(k+l) = [bU(k+l) + c.u(k) + b U(k+l)
N'i a. J1j + j N,j+1 j N-I,j

SCj-UN,j-1 + F (1 - )U ( k )

for j = 1, 2,..., N- 1, if j >; (67)

k+) (k+) (57)(k+1) = UNk+ for j= 1, 2,..., N - 1, ifk > .

Now proceed with the computations (36), interspersing the computations (67) and

(57) as necessary.

Upon completion of the computations (36), compute:

No F. ]
U(k+l) U ( k+ + + (1 - w) U(k (68)

for i= 0, 1, 2,..., No.

For each i= 0, 1, 2, .. N; j = 0, 1,2,..., N , if U(k+) - U(.k) > 6(k)

then set E(k) = ) U (k I; otherwise, do not change the current value of

E(k) . This procedure determines

E(k) = max [u k+l) _ U(k)k +  (70)
0 7 1,

.0< j -<N
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11. If k 2 2, then calculate the convergence parameter

r(k) = E(k)/E(k-1). (38b)

In the case k = 1, omit this calculation.

12. If e(k) > EINNER and k 2 kmax, then the inner iterations do not converge

within the allotted number of iterations. If m = 1, disregard such non-

convergence and proceed to step 13. However, if m > 1, the algorithm does not

converge to the desired eigenvalue. Return to step 1.

If E(k) > EINNER and k < k max, then continue the inner iterations by return-

ing to step 9.

If E(k) < INNER' then the inner iterations have converged. Proceed to step 13.

13. Calculate the approximate fundamental eigenvalue by the Rayleigh quotient:

0 -F12 F2N1P = -
(71a)

i=1 J) +F UN N¢

Q=. jFi,jU +F k U1, (71b)
i=1 j=1

X(m) = P/Q.

14. If m = 1, proceed to step 15.

If m > 1 and if I (m) - k(m"-)I < EOUTER as in inequality (43), then the outer

iterations have converged, and X( m) is the calculated fundamental eigenvalue.

The numerical solution is completed.

If m > 1 and if jX( m) - k(m-1)l OUTER as in inequality (44), then if

m k mmax, the outer iterations do not converge within the allotted number of

iterations. The algorithm in this case does not converge to the desired eigenvalue.

Return to step 1.

If m > 1 and if fX(m) - k(m-l 2 EOUTER , but if m < mmax, then continue the

outer iterations by proceeding to step 15.
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15. Re-initialize U for successive overrelaxation by the power method:

(m+ l)= (m)U(m) for i = 0, 1, 2,..., No;

j = 1, 2,..., No. (72)

If m = 1 (and assuming that r(k) < 1), then compute a scalar relaxation factor by

W 2 (40)
1 +/1 - r ( k )

If m > 1, omit this calculation.

Increase the value of the outer iteration index by unity, i.e., replace m by

(m + 1), and resume successive overrelaxation by returning to step 7.


